Treinamento de rede neural
Publicado por Tiago R. de Oliveira 13/09/2006
[ Hits: 16.120 ]
Download treinaRedeNeural.java
Salve gurizada, este é um pedaço de um programinha que eu fiz para fazer o cálculo de uma rede neural, porém esta ainda é a versão -0.00001, somente um esboço, mas funciona. Passando os parâmetros certos ele salva, pega os pesos em arquivos texto e, ao fim, salva-os. Beleza, até mais!!!
import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.PrintStream; import java.util.Random; public class Treina { /** * Treinamento da Rede Neural * Classe que faz o treinamento de uma rede neural * com 36 entradas, 4 neuronios na camada oculta, e 1 na camada de saida * salvando os pesos em arquivo texto. */ /* * construtor */ public Treina(float vetorValores[], int valorASair) throws IOException{ vetorValoNeuronioCamada1 = vetorValores; valorEsperado = valorASair; calcula(); } public float vetorValoNeuronioCamada1 []; public float pesosNeuroniosCamada1 [][]; public float vetorValorNeuronioCamada2 []; public float pesosNeuroniosCamada2 []; public int valorEsperado; /* * funcao de leitura dos pesos em um arquivo texto, onde os pesos de cada nruronio estao delimitado * pelos numeros 1 2 3 4 5 respectivamente */ public void lePesosCamada1(int proximaPosicao, int posicaoMatriz) throws IOException{ FileInputStream arq; arq = new FileInputStream("pesosCamada1.txt"); int caracterlido = arq.read(); for (int j = 0 ; j <= 143 ; j++){ caracterlido = arq.read(); if (caracterlido == posicaoMatriz){ for (int i = 0; i <= 34; i++){ if (caracterlido != proximaPosicao){ pesosNeuroniosCamada1[i][posicaoMatriz] = caracterlido; caracterlido = arq.read(); } if (i == 34){ break; } } } } arq.close(); } public void lePesosCamada2() throws IOException{ FileInputStream arq; arq = new FileInputStream("pesosCamada2.txt"); int caracterlido = arq.read(); for (int i = 0; i <= 3; i++){ pesosNeuroniosCamada2[i] = caracterlido; caracterlido = arq.read(); } arq.close(); } public void calcula() throws IOException{ boolean chegouOFim = false; while (chegouOFim = false){ /** * inicia o calculo da camada oculta */ float v11 = 0; float v12 = 0; float v13 = 0; float v14 = 0; lePesosCamada1(2,1); lePesosCamada1(3,2); lePesosCamada1(4,3); lePesosCamada1(5,4); /* * calcula o Vk da camada oculta */ for (int i = 0; i <= 34; i++){ v11 += vetorValoNeuronioCamada1[i] * pesosNeuroniosCamada1[i][0]; v12 += vetorValoNeuronioCamada1[i] * pesosNeuroniosCamada1[i][1]; v13 += vetorValoNeuronioCamada1[i] * pesosNeuroniosCamada1[i][2]; v14 += vetorValoNeuronioCamada1[i] * pesosNeuroniosCamada1[i][4]; } /* * calcula o Yk da camada oculta */ float y11 = (float) (1 /(1+(Math.pow(2.7182,v11)))); float y12 = (float) (1 /(1+(Math.pow(2.7182,v12)))); float y13 = (float) (1 /(1+(Math.pow(2.7182,v13)))); float y14 = (float) (1 /(1+(Math.pow(2.7182,v14)))); vetorValorNeuronioCamada2[0] = y11; vetorValorNeuronioCamada2[1] = y12; vetorValorNeuronioCamada2[2] = y13; vetorValorNeuronioCamada2[3] = y14; /* * Inicia o calculo da camada de saida */ float v21 = 0; /* * calcula o Vk da camada de saida */ lePesosCamada2(); for (int i = 0; i <= 3; i++){ v21 += vetorValorNeuronioCamada2[i] * pesosNeuroniosCamada2[i]; } /* * calcula o Yk da camada de saida */ float y21 = (float) (1/(1+(Math.pow(2.7182,v21)))); /** * faz o calculo do erro */ float e21 = 0 - y21; /* * faz o teste do erro */ if ((e21 >= (valorEsperado - 0.3)) && (e21 <= valorEsperado + 0.3)){ System.out.println("acabou, pois o erro era de " + String.valueOf(e21)); chegouOFim = true; }else{ chegouOFim = false; /* * calcula o gradiente da camada de saida */ float gradiente21 = (y21*(1-y21)) * e21; /* * corrige os pesos desta camada */ float vetorDeltaCamadaSaida[] = null; for (int i = 0 ; i <= 3 ; i++){ vetorDeltaCamadaSaida[i] = 1 * gradiente21 * pesosNeuroniosCamada2[i]; } /* * correção dos pesos sinapticos desta camada */ for (int i = 0 ; i <= 3 ; i++){ pesosNeuroniosCamada2[i] = pesosNeuroniosCamada2[i] + vetorDeltaCamadaSaida[i]; } /** * parte para a camada oculta */ /* * calcula o gradiente da camada oculta */ float gradiente11 = (vetorValoNeuronioCamada1[0]*(1-vetorValoNeuronioCamada1[0])) * (pesosNeuroniosCamada2[0]*vetorDeltaCamadaSaida[0]); float gradiente12 = (vetorValoNeuronioCamada1[1]*(1-vetorValoNeuronioCamada1[1])) * (pesosNeuroniosCamada2[1]*vetorDeltaCamadaSaida[1]); float gradiente13 = (vetorValoNeuronioCamada1[2]*(1-vetorValoNeuronioCamada1[2])) * (pesosNeuroniosCamada2[2]*vetorDeltaCamadaSaida[2]); float gradiente14 = (vetorValoNeuronioCamada1[3]*(1-vetorValoNeuronioCamada1[3])) * (pesosNeuroniosCamada2[3]*vetorDeltaCamadaSaida[3]); /* * corrige os pesos desta camada */ float deltaN1C1[] = null; float deltaN2C1[] = null; float deltaN3C1[] = null; float deltaN4C1[] = null; for (int i = 0; i <= 34; i++){ deltaN1C1[i] = (1 * gradiente11 * vetorValoNeuronioCamada1[i]); deltaN2C1[i] = (1 * gradiente12 * vetorValoNeuronioCamada1[i]); deltaN3C1[i] = (1 * gradiente13 * vetorValoNeuronioCamada1[i]); deltaN4C1[i] = (1 * gradiente14 * vetorValoNeuronioCamada1[i]); } /* * corrige os pesos sinapticos desta camada */ for (int j = 0; j<= 34; j++){ pesosNeuroniosCamada1[j][0] = pesosNeuroniosCamada1[j][0] + deltaN1C1[j]; pesosNeuroniosCamada1[j][1] = pesosNeuroniosCamada1[j][1] + deltaN1C1[j]; pesosNeuroniosCamada1[j][2] = pesosNeuroniosCamada1[j][2] + deltaN1C1[j]; pesosNeuroniosCamada1[j][3] = pesosNeuroniosCamada1[j][3] + deltaN1C1[j]; } FileOutputStream arq; PrintStream ps; try{ arq = new FileOutputStream("pesosCamada1.txt"); ps = new PrintStream(arq); ps.print(1); for (int i = 0; i <= 35 ; i++){ ps.print(pesosNeuroniosCamada1[i][0]); } ps.print(2); for (int i = 0; i <= 35 ; i++){ ps.print(pesosNeuroniosCamada1[i][1]); } ps.print(3); for (int i = 0; i <= 35 ; i++){ ps.print(pesosNeuroniosCamada1[i][2]); } ps.print(4); for (int i = 0; i <= 35 ; i++){ ps.print(pesosNeuroniosCamada1[i][3]); } ps.print(5); ps.close(); } catch (FileNotFoundException e) { System.err.println ("Erro na tentativa de abrir o arquivo"); } catch (IOException ex) { System.err.println ("Erro na escrita do arquivo"); } } } } }
Pesquisa Binaria em um vetor ordenado
Determinante de uma matriz de ordem 3.
Passkeys: A Evolução da Autenticação Digital
Instalação de distro Linux em computadores, netbooks, etc, em rede com o Clonezilla
Título: Descobrindo o IP externo da VPN no Linux
Armazenando a senha de sua carteira Bitcoin de forma segura no Linux
Enviar mensagem ao usuário trabalhando com as opções do php.ini
Instalando Brave Browser no Linux Mint 22
vídeo pra quem quer saber como funciona Proteção de Memória:
Encontre seus arquivos facilmente com o Drill
Mouse Logitech MX Ergo Advanced Wireless Trackball no Linux
Compartilhamento de Rede com samba em modo Público/Anônimo de forma simples, rápido e fácil
Remoção de propaganda com o programa Comskip[AJUDA] (2)
Linux Lite Demorando Muito Para Ligar (0)
PC não liga no filtro de linha (3)